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1 Introduction

In this paper we will study estimation of the transition
matrix A in a m~dimensional random sequence {X{mn), n=0,1,...}

generated by
X{n+tl) = AX(n) + Z(n+l) n=0,1,2,...

where
Z{n) n=1,2,... are i.i.d. m-dimensional random variables.
A is an {(unknown} mxm matrix and X(0) is an m-dimensional

random variable independent of {2{n) : n=1,2,...}.

If [|A|l < 1 the process {X(n) : n=0,1,2,...} is weakly sta-
tionary for suitable starting variable X(0). This process is

irregular for some A:s but has quite a periodic character for
other A:s. Processes with such A:s might be good models e.g.

for interacting predator-pray-populations in biology

(Isaksson (1987}}.

If [|A||] > 1 the process {X{n) : n=0,1,2,...} is an "exploding"
nonstationary dynamic system. This type of model might have

applications e.g. in biology and economy.

Both in the stationary and nonstationary case, the character
of the process depends strongly on A, and accurate estimates

are needed.

The simplest estimates of A are based on observations of con-
secutive transitions. If the components of 2(n} are independ-

ent with expection 0 and X(n)} is observed for n=0,1,..., N



a natural simple estimate is obtained by minimizing

N T
T(X(n) - AX(n-1)})" (X{(n) - AX(n-11))
n=1

In the stationary case this is essentially the Yule-Walker

estimate determined by the equation

R(a) = AR(0)

where R(m) is the estimate of the covariance function
R(m) of {X(n) : n=0,1,...}. The only difference is the drop
of some terms at the ends, which are usually included in the

estimates in R{m).

In a simplified onedimensional situation we demonstrate that
it might be better to base the estimate on transition in sev-
eral steps. This however means that we have to determine the
matrix A from A" for some m 2 2. Generally A" (and A) are not
symmetric. We propose an iteration method and we show that it
converges. The solution of A"-p (for some m 2 2) is not
unique and the result of the iteration depends on the start-
. ing point. For reasonably small m the difficulty of non-
uniqueness can however guite easily be overcome by using side

information on the approximate values of the elements in A.



2 A simple motivation

suppose that {X(n) : n=0,+1,...} is an autoregressive station-
ary Gaussian random process with expectation 0. In the model

formulation
Xi{n+1l) = aX(n) + Z{n+l)

the innovations Z(n+l) are independent Gaussian with expecta-

. . 2
tion 0 and some variance o .

suppose further that the parameters a and 02 of the process
are to be estimated by a reasonably long series of cobserva-

tion {X(n) :=1,2,...,N}.

A very simple estimate of a 1is obtained by the Yule-Walker

equation
a = R(1) / R(0O)

where R(m) is the (empirical covariance) estimate of the co-

variance function R{m) = Cov{X(n), X(n+m)).

gince the covariance function equals

R(m) = 02 . a|m|

it is also possible to estimate a by

A= (R(m) / R(ONH/™

or

1/m

_(R{m} / R(O})



if we can determine thea sign of a on other grounds. Suppose

in the following discussion that we know that a > 0 and thus

consider only a » C.

Wwhat are the variances of the different estimates am?

From the well-known formulas of the asymptotic variances and

covariances of the estimates R(m) it easily follows that

R(m) - R{m)
var = = {R(0)-R(m))
R(0) N+R(O)
This means that
S R(0)-R(m)
var am 1-2/m

NemZ+(R(m)/R(0))

which has a minimum when R(m}/R(0} * 0.2 (or a = 0.2). The
minimum is not very distinct, but the variance can be consid-

erapbly larger than the minimal value for m far away from its

optimal value.

1f e.g. a=0.9 the variance for m=1 is 4-5 times the minimal

variance obtained for m=7.

Even if this is a simplified one dimensional example, it in-
dicates that it might be a good idea to estimate the matrix
A in the model X(n+1) = AX(n) + Z{n+l) n=0,1,... by using

an intermediate estimate of A" for an m-step transformation

of the model.



3 Estimation of transition matrix for cone step and for

several steps

Let us consider first the estimation of the transition matrix

A in the model

X{n+l) = A¥{n) + Z(n+1)
when we have N+1 observations {X{(n) : n=0,1,...,N}. Since the
Z(n) : s are independent a natural estimate is obtained by

minimizing the "sum of squares”
N-1 T
L (X(n+l) - AX(n)}" (X{(n+l) - AX(n))
n=0

The minimum is easily seen to be obtained when

N-1 T N-1 T
A (ZX(n)X (n)) = £ X(n+1)X"(n)

n=0 n=0

In the stationary case this gives only a small modification
of the Yule-Walker equaticn. But the equation works in the

non-stationary case too.

1f the model
¥in+1l) = A¥{n) + Zin+1)

is rewritten into a model for m steps we get

m-1

X{n+m) = AmX(n) + ¥ Akz(n+m—k)
k=0
Although the random vectors
m-1 "
T ATZ(n4m-k) n=m,m+1,...

k=0




are not independent, a reasonable estimate of A" is obtained
by minimizing
N-m

5 (X(n+m) - ARR(n))T (X(n+m) - ATK(n))
n=0

Like in the case m=1 the minimum is obtained when

N-m T n-m T
Az X(n)x (n)) = I X(ntm)X (n)
n=0 n=0

Thus an estimate of a™ is easily obtained, the only problem

remaining is to get A from A™. This will be treated in the

next section.




4 Existence and unigqueness

Generally there is no unique sclution to the equation

for given B. For some B:s there is no real solution and for
some B:s there are several real solutions. If det B # 0 we
must have det A # 0 for a possible solution. Any matrix A

with det A = 0 can be written in the form

a =6 1pa

where G is a matrix with det G # 0 and D is diagonal with
the diagonal elements equal to the eigenvalues of A. The
columns {(rows) of G are determined by the eigenvectors of A.
Further A and B=A" have the same eigenvectors and if the

eigenvalues of A are Xk' then the eigenvalues of B=A" are

m
K
matrices they must be real or appear in complex conjugated

X The eigenvalues of A and B may be complex, but for real

pairs.

Suppose now for instance that B is a 2%x2 matrix with two

* x
different eigenvalues Al and AZ, at least one negative. Then

the equation

has no real solution, since there does not exist real or com-

. 2 _ . * 2 _
plex conjugated Al and Az such that Rl = Al and AZ = Az. Oon

* *
the other hand if kl and Az are complex conjugated there
exist two pairs Al, KZ of complex conjugated numbers such

that



where G is determined by the eigenvectors of B.

This simple example illustrates the principle problem in this
context. It is to be observed that lack of soclution does not
occur in isolated points only but in open sets. In the simple
case above the condition for getting at least one negative

eigenvalue, of two noncoinciding, is that

b + b < 0

11 22

and

b,.2 + b,,% - 4b

11 22 b

> 0

12 721

In estimation problems we must take care of the possibility
that A™ is estimated in a point where we have no solution.
This means that we happen to get an estimate outside the pos-
sibility parameter region, which is a problem appearing also

in other branches of statistics.



5 Numerical methods in estimation procedure

In this section we will consider iterative methods for solving

the equation

appearing in the estimation problem. We will use a variant

of the Newton-Kantorowich method.

Consider an operator P(x). A matrix A which makes P(2) a

zero operation can be found by an iteration procedure

- (P'(x 1

X+l T *x k! T OB(x)
The convergence of this type of iteration procedure is trea-
ted in Kantorowich and Akilov (1982), p. 532. The general

result is the following.

in an open subset 2 of a Banach space and the operator is
mapping the subset intc another Banach space and has a con-

tinuous second derivative in QO’ 90 C Q. Suppose, in addi-

tion, that
1) T, = |P'(«x )|'1 exists
0 0
2) HFO P(KO)H £ 7
3) Ty P"(K)E € K (ke@y)
Then, provided
- 1
h = Kn ¢ 5
and
> _ 1-¥1-2h
T 9= —x "
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equation P(x) has a solution k4., and Newton's process

converges to this solution. Furthermore
Tk, = KO” < To

Also, if for h < % we have

1+v/1-2h

Y e
while for h = % we have

T & 1

then k, is the unique solution in &,.

The rate of convergence is given by

n
I < lﬁ (2h) 2 1, (n=0,1,...)
2

hke = Kg

In our case the operator P(A) equals
P(A) = vec {Am-B}

where vec is an operator which transforms a matrix in a

column vector.

2

Ly aea™? 4

The first derivative of P{A) is P'(A) = 1AM
+ ... F Am‘1®1 but in, our procedure we will use an approx-

imation
P'(A) = m A" ~®I

using only one of the Cartesian products.
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Hence cur iteration equation is

vec {Ak+1} = vec {Ak} -
- |n’AE_1®I|_1 vec{Ag - B} k=0,1,...

which by using some rules of matrix algebra (McDonald

Swaminathan (1973)} is the same as the iteration egation

m
Aprr = By -

l..
Ay

=l

(AE - B) k=0,1,...

or

_ m-1 1
A = A, + o A

k+1 o B k=0,1,...

As we have pointed out in section 4 the matrix B and a solu-
tion A to the equation Am=B, have the same eigenvectors. The
following lemma shows that with a special start of the iter-

ation, the same holds for the iteration approximations.

Lemma. Suppose that the iteration

™ k=0,1,...

- m-1 1 a1-
A = A+ - Ak

where I is the unit matrix. Then all Ak for k=1,2,... have

the same eigenvectors as the matrix B.

If X denotes the eigenvalue of B corresponding to a certain
eigenvector and Ak denotes the eigenvalue of Ak correspond-
ing to the same eigenvector then these eigenvalues are de-

termined by
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Proof. Any vector g is an eigenvector of A0=I since a, Ig=a0g.
Further if g is an eigenvector of B with eigenvalue A and of

Ak with eigenvalue AK then

_ m-1 1l . 1-m —
Ppe1 95 g M 9t LA Bag =

- m-1 1 ,1-m _

T oom Ak 9 *n Ak Ag =

_ -1 1l . 1-m

= m M I Ftpi r9

Thus the lemma follows by induction.

Let us now consider the convergence of the procedure. This
can be obtained by the general Kantorowich theory. But it is
also possible to get a convergence condition and convergence

rate directly from the eigenvalue property in the lemma.

Let A, be a solution of

Ay =

and consider
m
_ m-1 (Ay) *
Merr T M T TR At -
m)\k
or
- m~-1
Meerhe e A A
A " moa, t m-1 - 1




Straight-forward calcuiations now show that if

|)\k -A*[ <A = 2
A g m-1
then
|"k+1'}‘*I ) l*k"**l
)\* A‘*

the procedure converges to XA,. This also means that if the
procedure starts with a matrix, whose eigenvalues are close
enough to the eigenvalues of a solution matrix the procedure

will give convergence to this matrix.

A reasonable starting peoint is

A, = (Det g)l/mv

if B is of tvpe vxv. The reason is that the product of the

1/m' which equals

eigenvalues of AO are then equal to (Det B)
the product of the eigenvalues of the unknown solution A.

Thus AO is of the "correct size'.

13
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